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The Celestial Sphere 
Historical documents show that many cultures have traditionally 
developed an (imaginary) Celestial Sphere surrounding the 
Earth, populated with constellations depicting mythical figures 
and objects. Modern day astronomers have retained the idea of a 
celestial sphere and use it as the framework for quantitative 
measurements of the positions of celestial objects. 

Introduction - An Observational Science 
stronomy is the study of the physical Universe, the entire Cosmos around 
us, and as such is a fabulous and fascinating challenge. Unlike other 
physical sciences where the investigator can design an experiment to 

measure a particular quantity, astronomy is largely an observational science. 
Astronomers cannot set up control experiments or make adjustments to the 
universe to isolate the one aspect of it that they are trying to investigate. Instead 
they are constrained to making observations of the universe as it actually is. 
Therefore astronomy depends upon the acquisition of observational data, followed 
by its careful analysis and interpretation to infer the properties of remote celestial 
objects. 

Over the last century, advances in technology have done much to enhance our 
view of the universe. In this first section, we will describe the measurement of the 
fundamental observational quantities - position and time - as commonly used by 
astronomers. Later in the course, we will show how various observational 
quantities are used to determine physical properties of stars, nebulae and galaxies. 

                                                           

1 Whenever you see a book icon in the margin, you will find a reference to the recommended text Universe 
by Kaufmann. Publisher’s details of this can be found in the Astronomy Workbook. Specific references 
to page numbers or diagrams will assume Kaufmann 6th edition, but general references to chapters are 
valid for 5th or 6th editions. 

Section 
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If you have a copy of the recommended text (Universe by Kaufmann) you should 
read Chapters 1 and 2. 

Fundamental Observational Quantities 
It is not necessary to make detailed observations of the night sky to discover some 
of its fundamental properties. Even with the unaided eye we can see point sources 
of light scattered randomly over the celestial sphere. Our ancestors were able to 
identify groups of stars, or constellations that can still be seen today. Hence we 
know that the vast majority of stars appear to maintain the same relative position 
for long periods of time. It is also obvious that stars have a range of brightness 
and many people can discern stars of different colours. In the opening sections of 
this course we will look in detail at each of these topics, starting here with the 
positions of the stars. 

Positional Astronomy 
When defining the positions of astronomical objects it is convenient to consider 
them as lying on the surface of the celestial sphere, which is a large, imaginary 
sphere centred on the Earth. Because all stars are at a much greater distance than 
the dimensions of the Earth itself, this effectively defines the stars’ directions in 
space. As the Earth rotates about its axis each day, the celestial sphere appears to 
turn overhead, (see Figure 2-11 in Chapter 2 of Kaufmann) leading to the 
phenomenon of the stars rising in the east and setting in the west on a daily basis, 
just like the Sun and Moon. 

Astronomers use a celestial co-ordinate scheme that is based on the celestial sphere 
and is analogous to the geographical system of latitude and longitude used for 
positions on Earth. This is shown in Figure 1.1. 

north celestial pole

south celestial pole

Earth

celestial
equator

celestial
sphere

 

See Footnote 1 on 
Page 1-1. 

%%%%

%%%%

Figure 1.1 
The Celestial Sphere. 
The vertical line 
through the Earth�s 
poles is the rotation 
axis. 
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Stellar Magnitudes 
At the beginning of this section we saw that the Greek astronomer Hipparchus 
classified the brightness of naked eye stars according to a system of stellar 
magnitudes. The smaller the numerical value of the magnitude of a star, then the 
brighter the star. The system of magnitudes in use today is in line with this 
historical definition, and has been extended to include negative and non-integer 
values. If a star is brighter than magnitude 0.0 then its magnitude is expressed as a 
negative number. For example the magnitude of Sirius (Alpha Canis Majoris) is 
−1.4. The magnitude of objects as they appear on the sky is known as the 
apparent magnitude. The full range of apparent magnitudes on the modern scale 
is shown in Kaufmann Figure 19-6, running from –26 for the Sun through the 
traditional naked-eye range of 1 to 6 magnitudes, and up (in magnitude) to the very 
faintest stars that can be detected with the largest telescopes and most sensitive 
detectors, currently approaching 30th magnitude. Table 2.4 gives the apparent 
magnitudes of a number of familiar astronomical objects. Most of the stars that 
define the brightest constellations are first magnitude stars. Norton’s 2000 Star 
Atlas provides approximate magnitudes of the bright stars. 

Object Apparent 
magnitude (m) 

Venus −4 
Jupiter −2.5 
Sirius −1.4 
Saturn −0.4 

Vega (αααα Lyrae) 0.0 
Polaris 2.1 
Megrez (Plough) 3.3 
R Lyrae (near Vega) +4.5 
Neptune 7.62 

 

The magnitude scale was put on a sound quantitative basis in the 1850s by the 
British Astronomer, N. R. Pogson, who proposed that for two objects a 

magnitude difference of 5 magnitudes corresponded to a factor of 
exactly 100 in brightness. 

This is clearly a logarithmic scale, where a magnitude difference represents a 
multiplicative factor, reflecting the manner in which the human eye operates. Note 
however that it is not quite the same logarithmic scale as we discussed when 
plotting graphs above, where two orders of magnitude were equivalent to a factor 
of a 100. 

Table 2.4  
Apparent magnitudes 
of common objects. 
Note that magnitudes 
for planets are 
approximate and 
variable as their 
brightness depend 
upon their distance 
from Earth.  
See also the Astronomy 
Workbook for a list of 
examples. 

!!!!
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For example, for stellar magnitudes, a star of first magnitude is 100 times as bright 
as a star of 6th magnitude. Pogson’s magnitude system also requires that a 
difference of just one magnitude corresponds to a constant ratio of brightness. In 
the Magnitudes Exercise in the Astronomy Workbook, Table 2.1 shows that a 
difference of one magnitude corresponds to a constant ratio of brightness equal to 
2.512. It then follows that five magnitudes correspond to a ratio of 2.5125 which 
equals 100, in agreement with Pogson’s statement above. 

Flux 
Astronomers usually use the term flux to describe the brightness of a star. This can 
be defined as: 

Flux (F): Total flow of light energy perpendicularly crossing unit area 
per unit time. It has units of J s–1 m–2 or equivalently W m–2. 

If two stars of apparent magnitudes m and n have measured fluxes Fm and Fn 
respectively, then we can use the idea of a constant ratio per magnitude to obtain a 
general formula for the ratio of the fluxes. 

)(512.2 mn

n

m

F
F −=      Equation 2.1 

Note that the star with the greater magnitude will have the smaller flux. 

Example 1 
If one star has a magnitude of six (6th magnitude) and another star has a magnitude 
of one (1st magnitude) what is the ratio of fluxes from these stars? 

Solution Let us suppose that the fainter star has magnitude n = 6, and the brighter 
star has magnitude m = 1. Then the magnitude difference (n – m) = 6 – 1 = 5. In 
Equation 2.1, Fm will represent the flux of the 1st magnitude star, and Fn will 
represent the flux of the 6th magnitude star. The ratio of the fluxes that we are 
required to find is then the quantity on the left hand side of Equation 2.1. Let us 
now substitute in the values. 

100512.2

512.2
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m
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In performing this last step it is necessary to use a calculator or other means to 
raise the number 2.512 to the power 5. The result obtained for the ratio of the 
fluxes of the two stars is exactly 100, confirming that Equation 2.1 is a 
mathematical version of Pogson’s statement in the shaded box that a magnitude 
difference of five magnitudes corresponds to a factor of 100 in brightness, here 
expressed in terms of the flux. 

!!!!

≈≈≈≈    
$$$$
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Equation 2.1 above can be rearranged to find the magnitude difference between 
two objects expressed in terms of the logarithm of the flux ratio. This form, known 
as Pogson’s relation, is what we will use most frequently for many calculations in 
this course. 

n

m

F
F

nm log5.2 ×−=−      Equation 2.2  

where ‘log’ means the logarithm to base 10 of a number. 

This expression tells us that the difference in magnitudes of two stars is equal to 
-2.5 times the logarithm of the flux ratio of those same two stars. It is clear from 
this equation that Pogson’s magnitude scale is really logarithmic rather than linear, 
reproducing the logarithmic response of the human eye on which Hipparchus’ 
system was based. The factor of –2.5 is present in Equation 2.2 to ensure that a 
factor of 100 leads to five astronomical magnitudes, whereas without it, a factor of 
100 would correspond to just two orders of magnitude. The minus sign is there to 
ensure that fainter stars have more positive magnitudes. Note that the decibel scale 
in sound measurement has a very similar defining equation, except that its 
numerical factor is different (with +10.0 rather than –2.5). 

Let us now use the same example as above to demonstrate that Equation 2.2 is 
also exactly equivalent to Pogson’s original formulation of magnitude scale as given 
in the shaded box. 

Worked Example 2 
If one star has an apparent magnitude of six (6th magnitude) and another star has 
an apparent magnitude of one (1st magnitude) what is the ratio of fluxes from these 
stars? 

Solution Use Equation 2.2 with m = 1, n =6 and Fm/Fn the required flux ratio 

  

n

m

n

m

F
F

F
Fnm

log5.2561

log5.2

−=−=−

−=−
 

The LHS of equation above gives –5 and we divide both sides by  –2.5 to get: 

  
n

m

F
F

log2 =  

Taking the antilog of both sides gives the required answer: 

fluxes of ratio10010)2antilog( 2 ====
n

m

F
F

 

i.e. the 1st mag star is 100 times as bright as the 6th mag star, just as expected. 

Mathematical 
formulation of the 
magnitude scale. 

≈≈≈≈    

$$$$
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Gaps in the HR diagram 
Other zones in the HR diagram are unstable areas in which stars either do not 
exist, or spend only small fractions of their lives as their internal structures change 
from one zone of stability to another. 

Good examples of these are the variable stars that are found in the triangular 
zone between the upper left hand portion of the main sequence and the red giant 
branch. Variable stars such as Cepheid and RR-Lyrae variables occupy this zone 
and represent stars either moving towards the red giant phase from the main 
sequence, or stars moving up the red giant branch as their core burning phases 
change prior to becoming supernovae. We will discuss this in more detail when we 
cover stellar evolution later in the course. 

Therefore we see that the HR diagram can tell us much about a star. It is extremely 
important and will also figure highly in any further study of astronomy or 
astrophysics. As the course progresses we will discuss the detailed physics of stars, 
and learn how they behave and why they are so stable for such lengthy periods.  

Fundamental stellar parameters 
Masses of main-sequence stars 
Although the mass of a star is extremely difficult to determine (it is not possible to 
just go and weigh one!) you will see (in Section 7) that there are ways to determine 
this for some stars. It turns out that stars have masses in the relatively narrow range 
of about 0.1 M& to about 50 M&. On the main-sequence, the mass decreases 
steadily from the most massive objects located in the top left of the HR diagram, as 
shown in Figure 4.3.  
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Figure 4.3 
Theoretical HR 
diagram showing 
masses of main 
sequence stars and 
lines of constant 
radius. 
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Atomic Hydrogen Spectrum 
We can now use the energy level diagram for hydrogen to deduce what the 
hydrogen spectrum will be like. Let us assume that we need to derive the 
absorption line spectrum for atomic hydrogen. The absorption process removes a 
photon from the radiation field and increases the energy of the electron. Only 
certain photons will be absorbed: those which have energy equal to the gaps 
between any two energy levels in the energy level diagram. 

The energy level diagram Figure 5.10 shows some of the different transitions 
possible. Notice there are different groups of absorption lines: those that start in 
the ground state (n = 1); then those that start from n = 2 and so on. Each of the 
groups is called a series. The most famous group in astronomical spectra is the 
Balmer series from n = 2 to a higher level. This series is well known because it is 
lies in the visible portion of the spectrum. The Lyman series is in the ultraviolet 
region of the spectrum. All the other series will be toward longer (redder) 
wavelengths.  

Astronomers denote the Balmer lines in sequence from the principal line (n = 2 to 
3) with the notation Hα, Hβ, Hγ, Hδ etc. (Sometimes the Greek symbols appear 
as subscripts.) The wavelength λ and frequency ν can be calculated using the 
Planck relation 

λ
ν hchEEE mn ==−=∆     Equation 5.6 

and we can use the energies of the different energy levels (go back to Table 5.1) 
that we calculated using the Bohr Equation (5.3) and RH(=13.6 eV) the  ionisation 
potential of hydrogen. 

Worked Example  
Calculate the wavelength of the Hβ line. 

Solution The Hβ line results from a transition between level 2 and level 4. We can 
therefore use Equation 5.3 with n = 4 and m =2.  

eV)40.3()85.0( −−−=∆E  

Equation 5.6 can then be used to calculate the wavelength. 

nm5.487

10
106.155.2

1031063.6 9
19

834

=

×
××

×××=
∆

= −

−

E
hcλ  

Notice how the transitions on the energy level diagram produce the famous 
Balmer line spectrum shown in Figure 5.10. The spectral lines are well spaced 
towards the red, but towards the blue become closer as the lines approach the 
series limit. 

$$$$
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Like hydrogen, all atoms have energy levels between which their electrons can 
move. However, these are usually much more complex for heavier elements than 
for hydrogen and helium. In each case there is more than one electron in the 
system, so there are different ionisation states. Each atom and ion has its own 
unique energy level diagram which provides each ion with a unique pattern of lines 
in its spectrum. These unique patterns are the signatures of the elements and allow 
astronomers to detect the presence and calculate the abundance of elements in 
astronomical bodies such as stars and nebulae. 

Origins of Stellar Spectroscopy 
Astronomers at Harvard noticed that spectra could show great differences in their 
general appearances: the majority show absorption lines, only a few show emission 
lines. Early catalogues of spectra were classified by Annie Cannon and included 
around 200,000 stars brighter than ninth magnitude in a total of 9 volumes. The 
volumes are known as the Henry Draper Catalogue since the work was funded by 
a large donation from his estate. Stars were arranged in sequence based on the 
presence and strengths of certain lines. The pioneering work of Kirchhoff and 
Bunsen showed that the absorption lines are caused by absorbing gas in the cool 
outer layers of stars. If the process is the same in all stars (Kirchhoff’s rules) why 
do spectra look so different from the sun? (eg stars show a great variation in the 
strength of the H lines.) Astronomers first thought that the absence of absorption 
lines implied the absence of that chemical. But this is not necessarily true because 

Figure 5.10  
Formation of 
absorption lines due to 
hydrogen atom 
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3. Chromatic aberration is due to dispersion in the lens resulting in light 
rays of different wavelength (colour) being brought to a focus at 
different points along the optical axis (Universe Figure 6-7). 

The first two of these aberrations are produced by many optical systems (including 
mirrors and your eye) but the third is due solely to variations of the refractive index 
of the lens material, as a function of wavelength. 

red
blue

achromatic
image

plano concave lens
of flint glass n~1.65

bi-convex lens of
crown glass n~1.5

 

Chromatic aberration can be greatly improved by using a compound lens (see 
Figure 6.7) for the objective (primary) lens. This can be made of two separate 
lenses, each of a different type of glass (crown and flint) that have different 
refractive indices. The crown lens is convex (or positive) and the flint lens is plano-
concave (or negative). The compound lens is designed so that the chromatic 
aberrations in each of the two lenses cancel out for two specific wavelengths. 
However the correction is only approximately right for light of other colours. See 
also the historical discussion later in this section. 

Telescope Designs 
Today’s telescopes fall into three general classes of design: refractors, reflectors 
and catadioptric systems. The very first astronomical systems, dating back to 
1605, were simple refracting telescopes. Modern amateur (and smaller professional) 
systems are usually compact catadioptric designs. 

Refractors 
Most early telescopes used refraction in a glass lens to form an image of visible 
light. An astronomical telescope can be used visually by viewing with the naked eye 
or to produce an image on a detector. 

Rays of light arriving from a very distant star or planet are, for practical purposes, 
parallel to each other. In astronomical use we can say that the object is effectively 
at an infinite distance. The rays are bent slightly at each surface of the lens and with 
careful design all the rays that pass through the lens will pass through a single point 
called the focus. This is true for the two arrangements shown in Figure 6.8. 

				
Figure 6.7  
An achromatic doublet 
lens constructed from 
two separate lenses 
made of crown and 
flint glass. 
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Carbon - Nitrogen - Oxygen Cycle 
The CNO cycle starts by a proton fusing with carbon (C12) to form an unstable 
isotope of nitrogen N13. This decays by means of beta decay producing C13 
together with a positron and a neutrino. 

 

412115
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NHC
eCN
NHC

+→+

++→

+→+
+→+

++→

+→+

+

+

ν
γ
γ

ν
γ

    Equation 9.17 

The following steps involve similar reactions, until the final reaction produces He4 
and releases C12. Notice that the C required for the reaction to take place only 
appears as a catalyst in this reaction. The carbon which is used up at the first stage 
of the reaction is regenerated in the last stage, resulting in no net use of carbon. 

The CNO cycle dominates at very high temperatures and so is the main energy 
generation process in hot, massive stars at the upper end of the main-sequence. 

However it is obvious that the presence of carbon is essential for the CNO cycle to 
operate. In Chapter 10, we shall see that all heavy elements including carbon are 
believed to have been formed in the interiors of stars over many generations of 
stellar birth and death. The very earliest stars would not have had sufficient carbon 
to support the CNO cycle, so they could only have generated energy via the pp 
cycle, whatever their mass. 
 

Summary of Main Points 
• The Sun is about 5 billion years old. So using its luminosity, we can estimate 

the total energy it must have generated in the past. 

• Thermal, gravitational and chemical energy reserves of the Sun all fall short of 
the energy required to fuel its main-sequence lifetime by several orders of 
magnitude. 

• Only nuclear energy is sufficient to fuel the Sun’s main-sequence life. 

• Energy generation on the main-sequence is via fusion of hydrogen to 
helium. 

• Main-sequence stars less massive than the Sun are fuelled by the pp chain, 
whereas massive stars on the main-sequence are fuelled by the CNO cycle. 

.

 

!!!!



AAA SSS TTT RRR OOO NNN OOO MMM YYY   

U N I V E R S I T Y  C E R T I F I C A T E  I N  A S T R O N O M Y  2 0 0 1 / 2 0 0 2  

© 2001 University of Central Lancashire 
Version 3.18181818  Page 11-17 

Distribution of galaxies in space  
Again, like stars, galaxies are rarely found isolated in space. They occur in groups, 
clusters and superclusters. The latter leads into cosmology, and we will address this 
later. The scale of galaxies themselves and the separations between them in loose 
associations such as the Local Group (containing the Galaxy, M31 and M33 and 
other smaller galaxies) are such that they can be quite well described as “cities of 
stars” (as in the title of this chapter). Kaufmann gives a good description of the 
Local Group and clustering of galaxies in Section 26-6. 
Extended halos of galaxies 
You will note that in our table of galaxy parameters, the diameter of the galaxy was 
referred to as the optical diameter. This is an important point and begs the question 
of “what determines the edge of a galaxy?”. Clearly this must be an observational 
effect, because as the density of stars on the sky (i.e. the number of stars per square 
parsec as seen from outside the galaxy) decreases towards its edge, their luminosity 
contribution will decrease and at some point they will be no longer observable 
above the background of our night sky (which is not perfectly black) or the limit of 
the sensitivity of a detector sent into space. A more sensitive detector might 
suggest a bigger galaxy as it can detect fainter emission (i.e. a smaller number of 
stars per square parsec). This is, in fact the case. In practice, one measures an 
isophotal diameter, usually defined as the diameter at which the brightness falls to 
the equivalent of one 25th magnitude star per square arcsecond of the galaxy image.  

Isophotal diameters are a convenient standard, but are not necessarily telling us the 
whole story. For example, it has been known for some years that observations of 
neutral hydrogen gas reveal that the galaxies are in fact much bigger than we 
deduce by observing starlight alone. An example of this is shown in Figure 11.11. 
Why this is the case, and how large these extended halos really are, is still a matter 
of debate. 
 

 
a) 

 
b) 

                                                                        

7 Reprinted by permission from Nature (http://www.nature.com) Vol 372, p530, copyright 1994 
Macmillan Magazines Ltd. 

!!!!

Figure 11.11  
M81 M82 NGC3077 
Cluster  
a) Image in optical 
light and b) High 
resolution image7 
showing neutral 
hydrogen gas (HI) 
connecting the cluster  
(Yun et al, 1994) See 
also 
http://www.aoc.nao.e
du/~myun. 
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Inflation 
The CBR is remarkably isotropic: deviations from isotropy are no more than 
about 1 part in 105. This is strong evidence in support of the assumption of 
isotropy. This isotropy is actually one of the problems for the big bang model. For 
directions separated by more than about 3° the regions of the universe emitting the 
CBR towards us could never, in the big bang model, have been in causal contact. 
This means that no agent could have passed between them to equalise the 
temperature of the CBR. So, why is the CBR so isotropic? This is called the 
horizon problem. Clearly the solution to this problem must lie in whatever model 
of the universe takes effect in the tiny interval of time before the big bang model 
takes effect. The solution to this problem might lie in inflation. In this model, a 
region of the initial universe that was in causal contact is inflated by a huge factor 
(perhaps 1050) when the universe was at an age of about 10–34 seconds, as shown in 
Figure 12.4. This inflated region would now form the entire observable universe 
(and universe beyond what is observable). Since the region was initially in causal 
contact the temperature would have been equalised and the CBR today would 
appear isotropic. 
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You might like to find out more about inflation in other reading. Inflation is also 
supposed to solve the flatness problem. The density parameter Ωo is observed to 
be quite close to 1. In the big bang model a value of 1 is not very likely - it requires 
an implausible degree of fine-tuning. However, inflation predicts that Ωo will be 
exactly 1.0. Thus inflation solves the flatness problem too. This would be 
wonderful except that after a period in which observations gave values of Ωo that 
appeared consistent with 1, the latest measurements are suggesting strongly that 
Ω ≈ 0.2 - 0.3. Inflation might not be the complete answer. 

Dark matter 
There is evidence that much of the matter in the universe is in an unknown form, 
which is revealed only by its gravitational effects. The existence of this dark matter 
is most convincingly demonstrated in the haloes of spiral galaxies, at radii beyond 
the starlight. Measurements of the rotation of hydrogen gas in the haloes show that 

Figure 12.4  
The effect of inflation 
on the scale factor of 
the universe as a 
function of cosmic 
time. 
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